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gyroscopic dynamical systems into uncoupled subsystems through the use of real congru-
ences. Two conditions, both of which are necessary and sufficient, are provided for the exis-
tence of a real linear coordinate transformation that uncouples the dynamical system into
independent canonical subsystems, each subsystem having no more than two-degrees-of-
freedom. New insights and conceptual simplifications of the behavior of such systems are
provided when these conditions are satisfied, thereby improving our understanding of
their complex dynamical behavior. Several analytical results useful in science and engineer-
ing are obtained as consequences of these twin conditions. Many of the analytical results
are illustrated by several numerical examples to show their immediate applicability to nat-
urally occurring and engineered systems. [DOI: 10.1115/1.4063504]
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1 Introduction
Understanding the fundamental behavior of large-scale linear

gyroscopic potential dynamical systems has, in recent years,
become an important topic of research, especially in aerospace
and mechanical engineering systems, because of the prevalence of
gyroscopic forces in, for instance, the rotary motion in rotating flex-
ible machinery, spinning elastic systems, astrodynamics, satellite
control, problems related to the motion of charged systems in mag-
netic fields, order reduction of systems with symmetries, and when
using rotating frames of reference in analytical dynamics.
In this paper, we consider a multi-degree-of-freedom potential

(conservative) system subjected to gyroscopic forces described by

M̃q̈ + G̃q̇ + K̃q = 0 (1)

where M̃, G̃, and K̃ are n-by-n constant real matrices; M̃ and K̃ are

symmetric, and G̃ is skew-symmetric (G̃ = −G̃T
). The n-vector of

generalized coordinates is denoted by q, and the dots indicate
differentiation with respect to time t. We aim to improve our analyt-
ical and intuitive understanding of the fundamental dynamics of
such systems.
Equation (1) represents a set of coupled second-order ordinary-

differential equations and can be obtained by the application of

Lagrange’s equations with the Lagrangian [1]

L(q, q̇) =
1
2
q̇T M̃q̇ +

1
2
q̇T G̃q −

1
2
qTK̃q (2)

Consider the real congruent nonsingular transformation q=Pp so
that

M̃ � M = PTM̃P, K̃ � K = PTK̃P, G̃ � G = PTG̃P (3)

When the matrix M̃ is positive definite and G̃ = 0 (pure potential
system or conservative non-gyroscopic system), one can always
find the real transformation matrix P so that the new inertia and
potential (stiffness) matrices are diagonal, i.e., in new coordinates
p, called normal (principal or modal) coordinates, the system is
decomposed into an independent (uncoupled) single-degree-
of-freedom subsystems. This classical result was established by
Weierstrass in 1858 in the context of the simultaneous reduction
of two quadratic forms to sums of squares [2]. When G̃ ≠ 0, the
system is not completely decomposable because of the coordinate
change in Eq. (3) that makesM and K diagonal retains G as a skew-
symmetric matrix. We note that the minimum number of degrees-
of-freedom necessary to incorporate gyroscopic effects is two and
that the eigenvalues of G are conjugate purely imaginary pairs and
zeros. Therefore, it is natural to ask whether or not we can decom-
pose system (1) into independent subsystems, each of which has no
more than two-degrees-of-freedom, by means of a real change of
coordinates conferred by using a real congruence transformation.
The answer to this question is the subject of this paper.
The intent of this paper is to show that multi-degree-of-freedom

gyroscopic potential systems can be uncoupled when certain
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necessary and sufficient conditions are satisfied, much like damped
potential systems can be when they satisfy the necessary and suffi-
cient condition first proposed by Caughey–O’Kelly [3]. And just as
the Caughey–O’Kelly condition leads to a drastic simplification and
therefore a much-improved understanding of the dynamics of
multi-degree-of-freedom damped potential systems in terms of the
behavior of simple, uncoupled, canonical one-degree-of-freedom
subsystems, the conditions obtained in this paper lead to a substan-
tial simplification and improvement in our understanding of the
behavior of multi-degree-of-freedom gyroscopic potential systems
in terms of simple, two-degrees-of-freedom uncoupled, canonical
gyroscopic potential subsystems, and simple, one-degree-
of-freedom uncoupled, purely potential subsystems.
We begin with a short prelude in Sec. 2 that presents two alge-

braic results, the first of which is well known; the second is
perhaps not as widely known and is perhaps limited to a smaller
audience of researchers. Both these results are basic to our further
development. Section 3 considers systems in which the mass
matrix M̃ > 0 and the potential (stiffness) matrix K̃ are symmetric.
Several new results are formulated, proved, and discussed. Numer-
ical examples are also provided showing the simplicity and efficacy
of the analytical constructs developed. Section 4 adduces results
from those developed in Sec. 3 for systems in which the mass
matrix M̃ is symmetric and the potential matrix K̃ > 0. Section 5
provides a summary of our main analytical findings.

2 Mathematical Preliminaries
We begin with some useful properties of real skew-symmetric

matrices [4].

LEMMA 1. Let G≠ 0 be an n× n real skew-symmetric matrix.
Then:

(a) rank(G)= 2m≤ n is even.
(b) G has a zero eigenvalue of multiplicity n− 2m, and 2m pure

imaginary eigenvalues in pairs ±iβj, i =
����
−1

√
, j= 1,…, m,

which are all simple or semi-simple.
(c) there exists a real orthogonal matrix Q such that.

QTGQ = diag β1
0 1
−1 0

[ ]
, . . . , βm

0 1
−1 0

[ ]
, 0, . . . , 0

( )
(4)

where βj. j= 1,…, m, are nonzero real numbers.
The block-diagonal matrix shown in Eq. (4) is the canonical (sim-

plest possible) form of a skew-symmetric matrix with respect to an
orthogonal congruence in which the matrixQ is real and orthogonal,
while the canonical form for a real symmetric matrix is, of course, a
diagonal matrix consisting of its real eigenvalues along the
diagonal.
The following assertion plays a central role in all our further con-

siderations. It is a counterpart of the well-known result which states
that the necessary and sufficient condition for two real symmetric
matrices to be simultaneously diagonalized by a real orthogonal
transformation is that the matrices commute in multiplication [4].

LEMMA 2. Let K=KT and G=−GT≠ 0 be n by n real matrices,
and let be rank(G)= 2m≤ n. The necessary and sufficient condi-
tions that there exists a real orthogonal matrix Q such that [5]

QTKQ = Λ = diag(λ1, . . . , λn) (5)

and

QTGQ = Γ = diag β1
0 1
−1 0

[ ]
, . . . , βm

0 1
−1 0

[ ]
, 0, . . . , 0

( )
(6)

where all the λj’s are real numbers and all the βj’s are nonzero real
numbers, are that.

KG2 = G2K (7)

and

(KG)2 = (GK)2 (8)

It is clear that the condition given in Eq. (7) implies symmetry of
the matrix KG2 since

(KG2)T = (KGG)T = GTGTKT = GGK = G2K = KG2 (9)

with the last equality following from Eq. (7). Also, when KG2 is
symmetric, Eq. (7) follows. In a similar manner, (KG)2 can be
shown to be symmetric, and when (KG)2 is symmetric, the condi-
tion given in Eq. (8) follows.
The above result, published in a small circulation journal, is little

known, and its proof is given in the Appendix.

3 Decomposition and Uncoupling of Gyroscopic
Systems With Symmetric Stiffness (Potential) Matrices
In this section, we consider multi-degree-of-freedom gyroscopic

systems whose mass matrices, M̃, are positive definite
(M̃ = M̃

T
> 0) and whose potential matrices, K̃, are symmetric, pos-

sibly positive semi-definite as when rigid-body motion is included.
Since the matrix M̃ is positive definite, upon premultiplication by

M̃
−1/2

, Eq. (1) can also be written as

ẍ + Gẋ + Kx = 0 (10)

where the symmetric matrix

K = M̃
−1/2

K̃M̃
−1/2

(11)

the skew-symmetric matrix

G = M̃
−1/2

G̃M̃
−1/2

(12)

and q = M̃
−1/2

x. In this section, we shall be mostly dealing with the
system described by Eq. (10), which is equivalent to the one
described in Eq. (1). We assume that the matrix G in the system
described by Eq. (10) has rank 2m≤ n. Our aim is to transform
the system described in Eq. (10) into a simpler set of independent,
uncoupled subsystems. Our first result states that this is possible
through the use of a real orthogonal congruence transformation.

Result 1
Consider the system described in Eq. (10) in which the skew-
symmetric matrix has rank 2m≤ n. Then, the necessary and suffi-
cient conditions for Eq. (10) to be decomposed by an orthogonal
congruence transformation into uncoupled subsystems, m of which
are two-degrees-of-freedom and n− 2m of which are single-
degree-of-freedom subsystems, is that

KG2 = G2K (13)

and

(KG)2 = (GK)2 (14)

The uncoupled equations in the principal coordinates p have the
following form.

p̈ + Γṗ + Λp = 0 (15)

where,

Λ = diag(λ1, λ2, . . . , λn) (16)

and

Γ = diag β1
0 1
−1 0

[ ]
, . . . , βm

0 1
−1 0

[ ]
, 0, . . . , 0

( )
(17)
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Proof. Using the real orthogonal transformation x=Qp with
QQT= In, Eq. (10) becomes

Qp̈ + GQṗ + KQp = 0

Premultiplication on both sides by QT results in the equation

p̈ + QTGQṗ + QTKQp = 0 (18)

in the new coordinate p.
Now, according to Lemma 2, the conditions in Eqs. (13) and (14)

are both necessary and sufficient for the existence of a real orthog-
onal matrix Q such that QTGQ=Γ and QTKQ=Λ so that Eq. (18)
becomes

p̈ + Γṗ + Λp = 0

were,

Λ = diag(λ1, λ2, . . . , λn)

and

Γ = diag β1
0 1
−1 0

[ ]
, . . . , βm

0 1
−1 0

[ ]
, 0, . . . , 0

( )
▪

The matrix Λ contains the eigenvalues of the matrix K, and the
matrix Γ indicates that the nonzero eigenvalues of G are ±iβj, j=
1, 2, …, m. We shall refer to p as the principal coordinate.
In this paper, we shall refer to an orthogonal matrix Q that makes

QTKQ=Λ and QTGQ=Γ where Λ and Γ are described in Eqs. (16)
and (17), as “the matrix Q that simultaneously quasi-diagonalizes
(or leads to the simultaneous quasi-diagonalization of) a symmetric
n-by-n matrix (like K) and an anti-symmetric n-by-n matrix
(like G).”

Remark 1. The matrix Γ2=QTG2Q is a diagonal matrix and con-
tains the eigenvalues of G2

Γ2 = diag(− β21, − β21, . . . , −β
2
m, −β

2
m, 0, . . . , 0) (19)

Since Λ and Γ2 are diagonal,

Γ2Λ = ΛΓ2 (20)

▪

As mentioned earlier, the system described by Eq. (1) is
equivalent to the system described by Eq. (10); this leads to the fol-
lowing result.

Result 2
Assume that the n-by-n matrix G̃ of the system described in Eq. (1)
has rank 2m≤ n. Then, the necessary and sufficient condition that
the system described by Eq. (1) can be transformed by a linear
change of coordinates to the one given in Eqs. (15)–(17) is that

K̃M̃
−1
G̃M̃

−1
G̃ = G̃M̃

−1
G̃M̃

−1
K̃ (21)

and

(K̃M̃
−1
G̃M̃

−1
)2 = (G̃M̃

−1
K̃M̃

−1
)2 (22)

Proof. Noting Eqs. (11) and (12), we find that the condition given
in Eq. (13) becomes

M̃
−1/2

K̃M̃
−1
G̃M̃

−1
G̃M̃

−1/2
= M̃

−1/2
G̃M̃

−1
G̃M̃

−1
K̃M̃

−1/2

Premultiplication and postmultiplication of this equation by M̃
1/2

yields Eq. (21).

Similarly, the condition given in Eq. (14) becomes

M̃
−1/2

K̃M̃
−1
G̃M̃

−1
K̃M̃

−1
G̃M̃

−1/2

= M̃
−1/2

G̃M̃
−1
K̃M̃

−1
G̃M̃

−1
K̃M̃

−1/2

Upon premultiplication on both sides by M̃
1/2

and postmultipli-
cation on both sides by M̃

−1/2
, we get

(K̃M̃
−1
G̃M̃

−1
)(K̃M̃

−1
G̃M̃

−1
) = (G̃M̃

−1
K̃M̃

−1
)(G̃M̃

−1
K̃M̃

−1
)

which is Eq. (22). ▪

Remark 2. The real numbers λj ( j= 1, 2,…, n), which are the eigen-
values of the matrix K, are also the eigenvalues of M̃

−1
K̃, while the

nonzero eigenvalues G, which are ±iβj ( j= 1,…, m), are also the
nonzero eigenvalues of M̃

−1
G̃. ▪

Remark 3. The necessary and sufficient conditions given in Eqs.
(21) and (22) guarantee that the system described by Eq. (1) can
be expressed by the uncoupled subsystems shown in Eqs.
(15)–(17) through a suitable linear coordinate transformation. The
real linear coordinate transformation q = M̃

−1/2
x = M̃

−1/2
Qp

accomplishes this. Note that the response, q(t), of the system
described by Eq. (1), will, in general, couple the response of the
uncoupled subsystems. ▪

Observe that the decoupling conditions Eqs. (21) and (22) (or
Eqs. (13) and (14)) hold trivially when either K̃(K) = 0 or
G̃(G) = 0. In the first case, the system described in Eq. (15)
reduces to the form p̈ + Γṗ = 0, while in the second case, as is well-
known, the system transforms to the completely uncoupled form
p̈ + Λp = 0.
A gyroscopic system is said to be perfectly matched if the gyro-

scopic matrix determined in normal coordinates (modal gyroscopic
matrix) contains one and only one nonzero element in each row
and column. The concept of perfect matching was introduced in
Ref. [6] in the study of the stability of gyroscopic systems (see
also Refs. [7,8]). By a permutation of normal coordinates, a per-
fectly matched system can be written in the form shown in Eqs.
(15)–(17) where, clearly, 2m= n. Then, it follows from Result 2
that in the general case of a gyroscopic system that satisfies condi-
tions Eqs. (21) and (22), the system, by a congruence transforma-
tion, splits into a 2m-dimensional (2m = rankG̃) perfectly
matched gyroscopic subsystem and an (n−2m)-dimensional pure
potential subsystem. In particular, if the gyroscopic system is non-
singular (i.e., det G̃ ≠ 0, and then n is necessarily even), then the
system is perfectly matched if and only if the conditions in Eqs.
(21) and (22) hold. On the other hand, as pointed out in Ref. [7],
there is a parallel between perfectly matched gyroscopic systems
and classically damped non-gyroscopic systems.
A damped system can be (formally) obtained by replacing the

gyroscopic matrix G̃ with the symmetric damping matrix D̃ in
Eq. (1). Such a system is said to be classically damped if it can be
uncoupled by modal analysis into a set of n independent
single-degree-of-freedom systems. According to the well-known
Caughey–O’Kelly result [3], the single necessary and sufficient con-
dition under which a damped linear system is classically damped is

K̃M̃
−1
D̃ = D̃M̃

−1
K̃ (23)

The case of classical damping is often assumed in scientific and
engineering literature, and more complicated non-classically
damped systems are treated as perturbations, small or finite, about
a classically damped system (see Ref. [9], for example).
In the case of gyroscopic systems, a similar approach can be

developed where the role of the unperturbed system is played by
a perfectly matched system [7]. Therefore, from this point of
view, Results 1 and 2 can be interpreted as a counterpart of the
result of Caughey–O’Kelly [3].
It should be noted that by replacing the gyroscopic matrix G with

the symmetric damping matrix D in Eq. (10), the Caughey–O’Kelly
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necessary and sufficient condition for a system to be classically
damped is KD=DK; this results from the substitution (see
Eqs. (11) and (12)) of D̃ =M1/2DM1/2 and K̃ =M1/2KM1/2 in
Eq. (23). The obvious analog of this commutation condition for
our corresponding gyroscopic potential system is simply the
single condition KG=GK.
The following real-world example with four degrees-of-freedom

illustrates the applicability of the result in Result 1.

Example 1. Consider a simplified model of two discs mounted on a
circular weightless elastic shaft rotating with a constant angular
velocity. The system is described by Eq. (10) with

G = ξ

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (24)

and

K =

2 − ξ2 1 0 0
1 4 − ξ2 0 0
0 0 2 − ξ2 1
0 0 1 4 − ξ2

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (25)

where ξ represents the angular velocity [10,11].
The matrices in Eqs. (24) and (25) satisfy condition (Eq. (13))

because G2=−ξ2I. Next, we calculate

KG = ξ

0 0 ξ2 − 2 −1
0 0 −1 ξ2 − 4

2 − ξ2 1 0 0
1 4 − ξ2 0 0

⎡
⎢⎢⎣

⎤
⎥⎥⎦

This matrix is skew-symmetric so that the matrix (KG)2 is
symmetric, i.e., the condition in Eq. (14) is also satisfied. Since
rank(G)= 4, the system can be transformed by a real orthogonal
congruence transformation into two uncoupled two-dimensional
subsystems.
Indeed, one easily verifies that the coordinate transformation x=

Qp, where the columns of the transformation matrix Q are the fol-
lowing orthonormal eigenvectors of the matrix (Eq. (25))

q1 =

��������
2 +

��
2

√√
2

1 1 −
��
2

√
0 0

[ ]T ,
q2 =

��������
2 +

��
2

√√
2

0 0 1 1 −
��
2

√[ ]T

q3 =

��������
2 −

��
2

√√
2

1 1 +
��
2

√
0 0

[ ]T ,
q4 =

��������
2 −

��
2

√√
2

0 0 1 1 +
��
2

√[ ]T
decomposes the system into the uncoupled form.

p̈1
p̈2

[ ]
+ ξ

0 −1
1 0

[ ]
ṗ1
ṗ2

[ ]
+ (3 −

��
2

√
− ξ2)

p1
p2

[ ]
= 0 (26)

p̈3
p̈4

[ ]
+ ξ

0 −1
1 0

[ ]
ṗ3
ṗ4

[ ]
+ (3 +

��
2

√
− ξ2)

p3
p4

[ ]
= 0 (27)

in which each uncoupled subsystem has just two-degrees-of-
freedom. ▪

Remark 4. Consider the relation

K̃M̃
−1
G̃ = G̃M̃

−1
K̃

which we will be using shortly. As mentioned before, this is equiv-
alent to the relation.

KG = GK (28)

Furthermore, when K=QΛQT, G=QΓQT, and Q is orthogonal
(Eqs. (18) and (15)), Eq. (28) can be rewritten as

ΛΓ = ΓΛ (29)

▪

COROLLARY 1. Let M̃ = M̃
T
> 0, K̃ = K̃

T
, G̃ = −G̃T

be n-by-n
matrices and rank(G̃) = 2m ≤ n. A necessary and sufficient condi-
tion for there to exist a real change of coordinates that transforms
Eq. (1) to the form given in Eq. (15) with

Λ = diag(λ1I2, λ2I2, . . . , λmI2, λ2m+1, λ2m+2, . . . , λn) (30)

where each diagonal block is proportional to the 2 by 2 identity
matrix I2, and

Γ = diag β1
0 1
−1 0

[ ]
, . . . βm

0 1
−1 0

[ ]
, 0, . . . 0

( )
(31)

is

K̃M̃
−1
G̃ = G̃M̃

−1
K̃ (32)

Proof. Sufficiency: Suppose that K̃M̃
−1
G̃ = G̃M̃

−1
K̃. Then, the

condition given in Eq. (21) is satisfied, since

K̃M̃
−1
G̃M̃

−1
G̃ = G̃M̃

−1
K̃M̃

−1
G̃ = G̃M̃

−1
G̃M̃

−1
K̃ (33)

Also, the condition given in Eq. (22), which is
(K̃M̃

−1
G̃M̃

−1
)2 = (G̃M̃

−1
K̃M̃

−1
)2, is obviously satisfied when

K̃M̃
−1
G̃ = G̃M̃

−1
K̃.

Thus, according to Result 2, there exists a linear transformation
which transforms Eq. (1) to the form given in Eq. (15). Moreover
from Remark 4, Eq. (32) implies that ΛΓ=ΓΛ which becomes

diag β1
0 λ1

−λ2 0

[ ]
, . . . , βm

0 λ2m−1
−λ2m 0

[ ]
, 0, . . . , 0

( )
=

diag β1
0 λ2

−λ1 0

[ ]
, . . . , βm

0 λ2m
−λ2m−1 0

[ ]
, 0, . . . , 0

( )

From this, it follows that λ1= λ2, λ3= λ4, · · · , λ2m−1= λ2m,
because βj≠ 0.
Necessity: Suppose a linear coordinate change q=Pp exists (non-

singular P) such that Eq. (1) is transformed to Eq. (15) and
PTM̃P = I, PTK̃P = Λ, and PTG̃P = Γ, with Λ and Γ given in Eqs.
(30) and (31). Then, M̃

−1
= PPT , G̃ = P−TΓP−1, K̃ = P−TΛP−1, so

that K̃M̃
−1
G̃ = P−TΛΓP−1 = P−TΓΛP−1 = G̃M̃

−1
K̃ since Λ and Γ

now commute. Thus, if there is a real congruence transformation
which transforms Eq. (1) to the form (Eq. (15)), with Λ and Γ
given in Eqs. (30) and (31), then condition (Eq. (32)) is satisfied. ▪

Remark 5. Working with the system described by Eq. (10), as
shown in Remark 4, Eq. (32) can be rewritten as

KG = GK (34)

The commutation of K and G ensures that the conditions in Eqs.
(13) and (14), namely, KG2=G2K and (KG)2= (GK)2, are satisfied.
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Postmultiplication of Eq. (34) by G gives

KG2 = GKG = GGK = G2K

where the second and third equalities follow from Eq. (34). We thus

see that K̃M̃
−1
G̃= G̃M̃

−1
K̃⇒KG2=G2K, and, of course, (KG)2=

(GK)2. ▪

Remark 6. We note that Corollary 1 gives a commutation condition
analogous to the Caughey–O’Kelly necessary and sufficient condi-
tion, and the condition in Eq. (23) is obtained by simply replacing G̃
in Eq. (32) by D̃. This becomes more evident when we observe that
in our case the two commuting matrices are K and G; in the
Caughey–O’Kelly result, the matrices are the symmetric matrices
K and D. However, the two analogous results are subtly different.
This is because the matrix Λ in Eq. (30) has a specific restrictive
structure in which the 2m eigenvalues of K appear in two-
dimensional diagonal blocks, each proportional to the identity
matrix, as seen in Eq. (30). From this we observe that, if K has
more than (n− 2m) distinct eigenvalues of multiplicity 1, commuta-
tion of K and G is not possible. ▪

Remark 7. It should be pointed out that it is well known that a suf-
ficient condition for two real normal matrices (which K and G are)
to be simultaneously quasi-diagonalized by a real orthogonal
matrix Q is that the two matrices commute [4]. What we have
shown here is a proof which shows that the commutation condition
for simultaneously reducing a symmetric matrix and a skew-
symmetric matrix to the form shown in Eqs. (30) and (31) is both
necessary and sufficient. It has the advantage of providing addi-
tional insight into the restricted form (see Eq. (30)) that such a
simultaneous quasi-diagonalization results in when the commuta-
tion condition is satisfied. ▪

Remark 8. The conditions provided in Result 1 go beyond the nec-
essary and sufficient condition obtained in Corollary 1, since the
condition in Corollary 1 places restrictions on the eigenvalues of
the matrix K. Thus, there exist matrix pairs {G, K} that do not
commute but can still be quasi-diagonalized. That is, the set con-
taining matrix pairs {G, K} that can be simultaneously quasi-
diagonalized by an orthogonal transformation is, in general, larger
that the set containing matrix pairs {G, K} that commute, as illus-
trated by the following two simple examples. ▪

Example 2. Consider the four-degree-of-freedom system described
by Eq. (1) in which

M̃ = I4, K̃ = diag(λ1, λ1, λ2, λ2), λ1 ≠ λ2, λ1, λ2 ≠ 0

and

G̃ = diag β
0 1
−1 0

[ ]
, β

0 1
−1 0

[ ]( )
, β ≠ 0

where I4 is the 4-by-4 identity matrix. Thus, K = K̃ and G = G̃. The
matrices K̃(K) and G̃(G) commute, and by Corollary 1, this commu-
tation condition guarantees an orthogonal matrix Q to exist for the
simultaneous quasi-diagonalization of K̃(K) and G̃(G). In this trivial
example, the matrix Q is obviously I4.
Were we to replace the matrix K̃(K) instead by the matrix K̃1 =

diag(λ1, λ2, λ2, λ2) with λ1≠ λ2, λ1, λ2≠ 0, then the matrices K̃1(K1)
and G̃(G) no longer commute. Notice also that K̃1(K1) is not in form
given in Eq. (30). By Corollary 1 (and the result in Ref. [4]), one is
no longer guaranteed that a matrix Q exists that leads to simulta-
neous quasi-diagonalization of K̃1(K1) and G. However, Result 1
guarantees that such a matrix Q does exist since the conditions
given in Eqs. (13) and (14) are satisfied. This is seen by a simple
computation, which shows that

K̃1G̃
2
= −β2diag(λ1, λ2, λ2, λ2) = G̃

2
K̃1

and

(K̃1G̃)
2 = −β2diag(λ1λ2I2, λ22I2) = (G̃K̃1)

2

The matrix Q simultaneously quasi-diagonalizes K̃1 and G̃ is
again, obviously, just the matrix I4. ▪

Example 3. We consider next a less trivial example. Consider the
dynamical system described by Eq. (10) in which the matrices

K =

2 0 0 0 0 −1
0 3 0 0 −1 0

0 0 5.5 −0.5 0 0

0 0 −0.5 5.5 0 0

0 −1 0 0 3 0

−1 0 0 0 0 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G =

0 1.5 0 0 −0.5 0

−1.5 0 0 0 0 0.5

0 0 0 3 0 0

0 0 −3 0 0 0

0.5 0 0 0 0 −1.5
0 −0.5 0 0 1.5 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Their spectra are {1, 2, 3, 4, 5, 6} and {±i,±2i,±3i}, respec-
tively. The real canonical form of G is therefore

Γ = diag 1
0 1
−1 0

[ ]( )
, 2

0 1
−1 0

[ ]
, 3

0 1
−1 0

[ ]

and rank(G)= 6. Since the eigenvalues of K are distinct, the com-
mutation of these two matrices is indeed ruled out. In fact, for the
two matrices to commute, we would require that the spectrum of
K be restricted to {λ1I2, λ2I2, λ3I2} as seen in Corollary 1. While
such multiple eigenvalues can arise in stiffness matrices in aero-
space and mechanical engineering, their occurrence is generally
not common.
Yet, simultaneous quasi-diagonalization of K andG is guaranteed

since KG2=GK2 and (KG)2= (GK)2, as can be verified by straight-
forward computation. ▪

Another way to understand the strong restriction placed on the
potential matrix, which the commutation condition given in
Eq. (32) demands, is to ask the question: given a gyroscopic
matrix, what are all the possible potential matrices that commute
with it? How do they compare in number with all the possible
potential matrices that satisfy the necessary and sufficient condi-
tions for quasi-diagonalization given in Eqs. (21) and (22)? To illus-
trate this approach, we provide the following example.

Example 4. Assume that we have a four-degree-of-freedom system
described by Eq. (10), with a gyroscopic matrix G that is already in
the canonical form given by

G = diag β1
0 1
−1 0

[ ]
, β2

0 1
−1 0

[ ]( )
, β1 ≠ β2 ≠ 0

Our aim is to determine all the symmetric matrices K that
commute with this given matrix G. A symmetric 4-by-4 K matrix
is, of course, defined by 10 elements (parameters), and therefore,
these elements constitute a 10-dimensional parameter space.
It is easy to see that all the possible Kmatrices that commute with

G must have the structure

K = diag(a1I2, a2I2)

thereby restricting the elements of K to a 2-dimensional subspace
from the 10-dimension parameter space of K.
Next, we look at those symmetric matrices K1 that satisfy the twin

necessary and sufficient conditions KG2=G2K and (KG)2= (GK)2.
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The structure of the matrix K1 that satisfies both these conditions is

K1 = K1(a1, . . . , a6) =

a1 a5 0 0
a5 a2 0 0
0 0 a3 a6
0 0 a6 a4

⎡
⎢⎢⎣

⎤
⎥⎥⎦

where the parameters ai, i = 1, . . . , 6, are arbitrary. The twin neces-
sary and sufficient conditions are thus seen to restrict the elements
of K1 to a six-parameter subspace of the 10-dimensional parameter
space. Thus, the dimension of the subspace of parameters present in
K1 exceeds the dimension of the subspace of parameters present in
K by 4. This shows that the restriction imposed on the stiffness
matrix by the condition of commutation is far greater than that
posed on it by the necessary and sufficient conditions given in
Eqs. (13) and (14). ▪

Examples 2–4 illustrate that the necessary and sufficient condi-
tion provided in Corollary 1 is strongly restrictive, and therefore
less valuable, than the necessary and sufficient conditions given
in Eqs. (13) and (14) for simultaneous quasi-diagonalization of K
and G.
The generalized coordinates q that we are concerned with in this

paper are real, and as mentioned in the Introduction, there are no
real coordinate transformations that would completely decompose
(diagonalize) the system described in Eq. (1). However, condition
(Eq. (32)) can be shown to be necessary and sufficient for the
complete decomposition of this system by means of a complex
linear transformation (*congruence). Indeed, according to a well-
known result [4], the two Hermitian matrices iG and K
((iG)∗ = −iGT = iG, K∗ = KT = K) can be simultaneously diago-
nalized by a unitary matrix U if and only if iG and K commute.
Here, ( )∗ is a complex conjugate transpose operators. The fact
that U is unitary means that U∗U = I and, consequently, whenever
the matrices iG and K commute, they possess a common system of n
mutually orthogonal eigenvectors—the columns of matrix U.
Create the unitary matrix U as

U = u1 �u1 . . . um �um u2m+1 . . . un
[ ]

where the complex conjugate vectors uj and �uj correspond to pairs
of nonzero eigenvalues of the matrix G, ∓iβj, j= 1,…, m, and the
real vectors u2m+1,…, un correspond to the zero eigenvalue of G.
Noting that a pair of conjugate complex eigenvectors of the sym-
metric matrix K corresponds to a pair of its real equal eigenvalues,
we have U∗iGU = diag(β1, − β1, . . . , βm, − βm, 0, . . . , 0) and
U∗KU = diag(λ1, λ1, . . . , λm, λm, λ2m+1, . . . , λn). Multiplying Eq.

(1) from the left by U∗M̃−1/2
and using the transformation

q = M̃
−1/2

Uz, we obtain the following 2 m uncoupled complex con-
jugate equations

z̈j − iβjżj + λjzj = 0
�̈zj + iβj�̇zj + λj�zj = 0

}
j = 1, . . . , m

and (n−2 m) real ones

z̈j + λjzj = 0, j = 2m + 1, . . . , n

Although this system is completely uncoupled in the complex z
variables, it should be said that in real coordinates, each pair of con-
jugate complex equations corresponds to a gyroscopically coupled
system with two-degrees-of-freedom. More precisely, separating
the real and imaginary parts of the variables zj ( j= 1,…, m) as zj
= ξj+ iηj, we obtain

ξ̈j
η̈j

[ ]
+ βj

0 1
−1 0

[ ]
ξ̇j
η̇j

[ ]
+ λj

ξj
ηj

[ ]
= 0

which, of course, agrees with Eqs. (30) and (31).
We next particularize the result in Result 2 to skew-symmetric

matrices G̃ whose nonzero eigenvalues are distinct.

Result 3
Let M̃ = M̃

T
> 0, K̃ = K̃

T
, G̃ = −G̃T

and rank(G̃) = 2m ≤ n. If all
the nonzero eigenvalues of the matrix M̃

−1
G̃(G) are distinct, then

the necessary and sufficient condition for the existence of a real
linear change of coordinates that transforms Eq. (1) to the form
given in Eqs. (15)–(17) is

K̃M̃
−1
G̃M̃

−1
G̃ = G̃M̃

−1
G̃M̃

−1
K̃

which is the condition given in Eq. (21).
Proof. Noting that K̃M̃

−1
G̃M̃

−1
G̃=G̃M̃

−1
G̃M̃

−1
K̃⇔KG2=G2K,

we can consider the equivalent system described by Eq. (10). It
therefore suffices then to show that, under the assumptions given,
that KG2=G2K↠ (KG)2= (GK)2.
According to Lemma 1, there exists a real orthogonal matrix Q

such that

G = Q Ĝ 0
0 0n−2m

[ ]
QT (35)

and

K = Q K̂ �K
�K
T ˆ̂K

[ ]
QT (36)

where

Ĝ = diag β1
0 1
−1 0

[ ]
, . . . , βm

0 1
−1 0

[ ]( )
(37)

with βj ≠ 0, (j = 1, . . . , m), and from the statement of Result 3, βj≠
βk for j≠ k. The matrix 0n−2m is an (n− 2m)-dimensional zero

matrix, K̂ and ˆ̂K are 2m and (n− 2m) dimensional symmetric matri-
ces respectively, and �K is a 2m by (n− 2m) matrix. Equation (13)

then yields �K = 0 because Ĝ
2
= −diag(β21I2, . . . , β

2
mI2) is nonsingu-

lar, and

K̂Ĝ
2
= Ĝ

2
K̂ (38)

Next, after partitioning the symmetric matrix K̂, as K̂ = [K̂jk]mj,k=1
with two-dimensional submatrices K̂ij, Eq. (38) becomes

β2j K̂jk = β2k K̂ jk , j, k = 1, . . . , m (39)

For j≠ k, Eq. (39) becomes (β2j − β2k )K̂jk = 0, and since βj≠ βk for
j≠ k, we find that K̂ jk = 0 for j≠ k. Thus, the matrix K̂ is block diag-
onal with two-dimensional submatrices Kjj along its diagonal, i.e.,
K̂ = diag(K̂11, . . . , K̂mm). Denoting this block-diagonal matrix by
K̂: = diag(K̂ jj)mj=1, we thus find that the matrix K that satisfies
Eq. (13) must have the form

K = Q
diag(K̂ jj)mj=1 0

0 ˆ̂K

[ ]
QT (40)

where ˆ̂K is an (n− 2m)-dimensional symmetric matrix. Now, it
follows that (KG)2= (GK)2, where the matrices G and K have
their structures are shown in Eqs. (35) and (37) and in Eq. (40).
This can be seen from the two-dimensional matrices

K̂ jj =
ka,jjkb,jj
kb,jjkc,jj

[ ]
, β̂: = βj

0 1
−1 0

[ ]

that satisfy this condition since

(K̂ jjβ̂)
2 = β2j

k2b,jj − ka,jjkc,jj 0

0 k2b,jj − ka,jjkc,jj

[ ]
= (β̂K̂ jj)

2

Then, Result 3 follows from Result 2. ▪
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Remark 9. Result 3 gives a single necessary and sufficient (n&s)
condition that guarantees simultaneous quasi-diagonalization of K
and G just like the analogous single n&s condition of Caughey–
O’Kelly. However, Result 3 applies only to skew-symmetric matri-
ces whose nonzero eigenvalues are distinct. Moreover, the n&s
conditions for the simultaneous quasi-diagonalization of K and G
and those for the analogous simultaneous diagonalization of K
and (symmetric) D are different in character. For simultaneous
quasi-diagonalization, the n&s condition is KG2=G2K while for
Caughey–O’Kelly’s simultaneous diagonalization it is KD=DK.
Note that KG2 = G2K⇏KG = GK (see Example 4).
Referring back to Examples 3 and 4 in which βj are all distinct,

the condition (KG)2= (GK)2 is automatically satisfied since
KG2 =GK2. ▪

COROLLARY 2. Let M̃ = M̃
T
> 0, K̃ = K̃

T
, G̃ = −G̃T ≠ 0. If

rank(G̃) = 2, then condition (Eq. (21)) is a necessary and sufficient
condition for Eq. (1) to be transformed to Eqs. (15)–(17) using a
real linear change of coordinates.

Proof. When rank(G̃) = 2, by Lemma 1 the nonzero eigenvalues of
G̃ have got to be distinct. Result 3 is therefore applicable. ▪
We illustrate Result 3 and its corollary by the following example.

Example 5. Consider the system described by Eq. (1) with

M̃ =
5 0 4
0 4 0
4 0 5

⎡
⎣

⎤
⎦, G̃ =

0 2 0
−2 0 2
0 −2 0

⎡
⎣

⎤
⎦, K̃ =

13 −3 14
−3 10 3
14 3 13

⎡
⎣

⎤
⎦
(41)

We note that since G̃ has dimension 3, which is an odd number, one
of its eigenvalues is zero, and the other two must be distinct since
they have to be of the form ±iβ.
First, we calculate

M̃
−1

=
1
9

5 0 −4
0 2.25 0
−4 0 5

⎡
⎣

⎤
⎦

and

K̃M̃
−1
G̃ =

1.5 −2 −1.5
−5 −12 5
−1.5 2 1.5

⎡
⎣

⎤
⎦

Since the matrix K̃M̃
−1
G̃ is not skew-symmetric (i e.,

K̃M̃
−1
G̃ ≠ G̃M̃

−1
K̃), Corollary 1 is not applicable. However,

K̃M̃
−1
G̃M̃

−1
G̃ =

1 6 −1
6 −20 −6
−1 −6 1

⎡
⎢⎣

⎤
⎥⎦ = (K̃M̃

−1
G̃M̃

−1
G̃)T

= G̃M̃
−1
G̃M̃

−1
K̃

and according to Result 3, there exist principal coordinates so that
the system decomposes into one two-degree and one
single-degree-of-freedom subsystem. In order to obtain the transfor-
mation matrix P that decomposes the system, we look for the solu-
tion of the generalized symmetric eigenvalue problem K̃u = λM̃u.
We get the eigenvalues and corresponding eigenvectors normalized
with respect to the mass matrix M̃, as follows:

λ1 = −2, q1 =
1���
22

√ 3 1 −3
[ ]T ; λ2 = 3, q2 =

1

3
��
2

√ 1 0 1
[ ]T ;

λ3 =
7
2
, q3 =

1���
11

√ 1 −
3
2

−1
[ ]T

Since G̃q2 = 0, we introduce principal coordinates p(t) =
p1 p2 p3

[ ]T
by the transformation q(t)=Pp(t), where

P = q1 q3 q2
[ ]

. Now, it is easy to verify that this transformation

reduces Eq. (1) with coefficient matrices as in Eq. (41) to the form

p̈1
p̈2

[ ]
+

��
2

√ 0 −1
1 0

[ ]
ṗ1
ṗ2

[ ]
+

−2p1
3.5p2

[ ]
= 0

p̈3 + 3p3 = 0 ▪

In the general case, the condition given in Eq. (13) (or Eq. (21))
does not imply the condition given in Eq. (14) (or Eq. (22)) and vice
versa, as the following two numerical examples show.

Example 6. Consider the system described by Eq. (10) with

G =

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎡
⎢⎢⎣

⎤
⎥⎥⎦, K =

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (42)

For this example, we haveG2=−I, and obviously, condition (Eq.
(13)) is satisfied. However, the matrix

(KG)2 =

−3 0 0 −2
0 −3 1 2
2 2 −1 0
−1 0 0 −1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

is asymmetric, i.e., (KG)2≠ (GK)2, and therefore, the system cannot
be decomposed into two independent subsystems.
To verify this, we solve the eigenvalue problem for K and obtain

λ1 = 0.1206, q1 = 0.228 0.4285 0.5774 0.6565
[ ]T

λ2 = 1, q2 = 0.5774 1 1 0 −1
[ ]T

λ3 = 2.3473, q3 = 0.6565 −0.228 −0.5774 0.4285
[ ]T

and

λ4 = 3.5321, q4 = −0.4285 0.6565 −05774 0.228
[ ]T

Substitution of x=Qp into Eq. (10), with Q =
q1 q2 q3 q4

[ ]
and premultiplying by QT, yields

p̈1
p̈2
p̈3
p̈4

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ +

0 −0.4492 0.2932 0.844

0.4492 0 −0.8441 0.2931

−0.2932 0.8441 0 0.4491

−0.844 −0.2931 −0.4491 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

ṗ1
ṗ2
ṗ3
ṗ4

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ +

0.1206p1
p2

2.3473p3
3.5321p4

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ = 0

and as we see in the principal coordinates, the system does not
decompose. ▪

Example 7. Consider the system described by Eq. (10) with

G =
0 1 0
−1 0 0
0 0 0

⎡
⎣

⎤
⎦

and

K =
1 2 1
2 4 2
1 2 3

⎡
⎣

⎤
⎦
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It is clear that G2=−diag(1, 1, 0) and

KG2 = −
1 2 0
2 4 0
1 2 0

⎡
⎣

⎤
⎦

so KG2 is asymmetric and the condition in Eq. (13) is not satisfied.
On the other hand, the matrix (KG)2= 0= (GK)2, and consequently,
the condition in Eq. (14) is satisfied. Note that in the coordinates

p = p1 p2 p3
[ ]T

obtained by the transformation using the
modal matrix

P =
0.8944 0.2433 0.3753
−0.4472 0.4865 0.7506

0 −0.8391 0.5439

⎡
⎣

⎤
⎦

the transformed system has the coupled form with respect to
velocities given by

p̈1
p̈2
p̈3

⎡
⎣

⎤
⎦+

0 0.5439 0.8392
−0.5439 0 0
−0.8392 0 0

⎡
⎣

⎤
⎦ ṗ1

ṗ2
ṗ3

⎡
⎣

⎤
⎦+

0
1.5505p2
6.4495p3

⎡
⎣

⎤
⎦= 0

▪

4 Decomposition and Uncoupling of Gyroscopic
Systems With Positive Definite Stiffness Matrices
In many applications in science and engineering, the potential

(stiffness) matrix of the system is positive definite. In this section,
we consider linear gyroscopic systems whose mass matrices, M̃,
are symmetric and whose stiffness matrices, K̃, are positive definite.
Since K̃

1/2
is now uniquely defined, premultiplying Eq. (1) by

K̃
−1/2

we obtain

Mÿ+ Gẏ+ y = 0 (43)

where the symmetric matrix

M = K̃
−1/2

M̃K̃
−1/2

(44)

the skew-symmetric matrix

G = K̃
−1/2

G̃K̃
−1/2

(45)

and

q = K̃
−1/2

y

Remark 10. Observe that Eq. (43) is analogous to Eq. (10), and the
right-hand sides of Eqs. (44) and (45) are obtained from Eqs. (11)
and (12) in Sec. 3 by simply interchanging the symbols M̃ and K̃.
Instead of aiming to quasi-diagonalize the matrices G and K in
Eq. (10), as we did in Sec. 3, we must now quasi-diagonalize G
and M in Eq. (43) instead. ▪

Result 4
Consider the system described in Eq. (43) in which the skew-
symmetric matrix G has rank 2m≤ n. Then, the necessary and suf-
ficient conditions for Eq. (43) to be decomposed by an orthogonal
congruence transformation into uncoupled subsystems, m of
which are two-degrees-of-freedom and n− 2m of which are
single-degree-of-freedom subsystems, is that

MG2 = G2M (46)

and

(MG)2 = (GM)2 (47)

The uncoupled equations in the principal coordinates p have the
form

Rp̈ + Γp + p = 0 (48)

with

R = diag(ρ1, ρ2, . . . , ρn) (49)

and

Γ = diag γ1
0 1
−1 0

[ ]
, . . . γm

0 1
−1 0

[ ]
, 0, . . . 0

( )
(50)

where ρj and γj are real numbers.
Proof. In view of Remark 10, all we need to do to get Eqs. (46) and
(47) is simply replace the K in Eqs. (13) and (14) by M. Equations
(48)–(50) are obtained in a manner analogous to those obtained
before in Result 1 of Sec. 3. ▪

The real numbers ρj ( j= 1, …, n) in Eq. (49) are eigenvalues of
the matrix K̃

−1
M̃(M), and the real numbers γj ( j= 1, …, m) in

Eq. (50) indicate that the nonzero eigenvalues of K̃
−1
G̃(G) are

±iγj ( j= 1,…,m).

Result 5
Let M̃ = M̃

T
, K̃ = K̃

T
> 0, G̃ = −G̃T

and rank(G̃) = 2m ≤ n. The
necessary and sufficient conditions for Eq. (1) to be transformed
by a linear coordinate change to the form given in Eqs. (48)–(50) are

M̃K̃
−1
G̃K̃

−1
G̃ = G̃K̃

−1
G̃K̃

−1
M̃ (51)

and

(M̃K̃
−1
G̃K̃

−1
)2 = (G̃K̃

−1
M̃K̃

−1
)2 (52)

Proof. In view of Remark 10, all we need to do is interchange the
symbols M̃ and K̃ in Eqs. (21) and (22) in Sec. 3 to get Eqs. (51) and
(52). ▪

As explained in Remark 10, the exchange M(M̃) ↔ K(K̃) then
permits us to obtain results for systems described by Eqs. (43) (or
Eq. (1)) in which K(K̃) is positive definite and M(M̃) is symmetric
that are analogous to those already obtained before in Sec. 3
for the systems described by Eq. (10) (or Eq. (1)) in which M(M̃)
is positive definite and K(K̃) is symmetric. We provide just one
such example below, which is analogous to Corollary 1 in Sec. 3.

COROLLARY 3. Let M̃ = M̃
T
, K̃ = K̃

T
> 0, G̃ = −G̃T

and
rank(G̃) = 2m. A necessary and sufficient condition for there to
exist a real linear change of coordinates that transforms Eq. (1)
to the form given in Eq. (48) with

R = diag(ρ1I2, ρ2I2, . . . , ρmI2, ρ2m+1, ρ2m+2, . . . , ρn) (53)

and

Γ = diag γ1
0 1
−1 0

[ ]
, . . . γm

0 1
−1 0

[ ]
, 0, . . . 0

( )
(54)

is

M̃K̃
−1
G̃ = G̃K̃

−1
M̃ (55)

Remark 11. If M̃ = M̃
T
> 0 and K̃ = K̃

T
> 0, then Result 5 (Corol-

lary 3) is equivalent to Result 2 (Corollary 1). Also, if the potential
matrix K̃ is negative definite Result 5 and its corollary can be
applied after the premultiplication of Eq. (1) by −1. ▪
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Remark 12. Condition (55) of Corollary 3 is necessary and suffi-
cient for the diagonalization of the system in complex coordinates
using a linear complex coordinate change. ▪

5 Conclusions
This paper deals with multi-degree-of-freedom linear gyroscopic

potential systems. Such systems are found in nature and in engi-
neered systems, especially in the areas of aerospace and mechanical
engineering. The paper relies on a recent result related to the devel-
opment of the two necessary and sufficient conditions for simulta-
neous quasi-diagonalization of a skew-symmetric and a
symmetric matrix by means of an orthogonal congruence. This is
analogous to the well-known necessary and sufficient condition
used by Caughey–O’Kelly for the simultaneous diagonalization
of two symmetric matrices.
The analogy between a linear multi-degree-of-freedom damped

potential system that has a symmetric damping matrix D̃ and a
linear multi-degree-of-freedom gyroscopic potential system that
has a skew-symmetric matrix G̃ stems from the fact that the
former system turns into the latter by replacing the matrix D̃ in its
equation of motion by the matrix G̃. Because of this formal
analogy, it is useful to compare results obtained for uncoupling
gyroscopic systems with the well-known results obtained for the
uncoupling of damped potential systems.
However, the replacement D̃ by G̃ causes a considerable change

in the system since the nonzero eigenvalues of G̃ are all conjugate
imaginary pairs, while the eigenvalues of D̃ are all real. This pre-
cludes the decomposition of a gyroscopic potential system into
uncoupled single-degree-of-freedom subsystems through the use
of a real coordinate change. The best that can be done using a
real coordinate change is to uncouple the system into subsystems
each of which has at most two-degrees-of-freedom. This is what
has been accomplished in this paper, and the necessary and suffi-
cient conditions for decoupling a gyroscopic potential system are
provided here. Such an uncoupling provides a new and deeper
understanding of the behavior of multi-degree-of-freedom gyro-
scopic potential systems in terms of one- and two-degree-of-
freedom subsystems that are much simpler and easier to understand.
Section 3 assumes that the mass matrix of the linear gyroscopic

dynamical system is positive definite and the stiffness (potential)
matrix is symmetric. We explore the use of real coordinate
changes to convert any such multi-degree-of-freedom gyroscopic
dynamical system into uncoupled subsystems. Below, we summar-
ize some of the main qualitative findings obtained in this paper.

(1) An n-degree-of-freedom linear gyroscopic potential system,
whose gyroscopic matrix has rank 2m≤ n, can be decom-
posed by a suitable real linear change in coordinates into m
uncoupled simple, two-degree-of-freedom subsystems and
(n− 2m) simple, one-degree-of-freedom subsystems if and
only if the twin conditions obtained in the paper are satisfied.
It should be noted that two independent necessary and suffi-
cient conditions for such a decoupling need to be simulta-
neously satisfied.

These uncoupled two-degree-of-freedom subsystems are
each gyroscopic potential subsystems in canonical form,
and the uncoupled single-degree-of-freedom subsystems
are each pure potential systems, also in canonical form.

(2) The uncoupling to at most two-degree-of-freedom subsys-
tems improves our fundamental understanding of the
complex behavior of multi-degree-of-freedom gyroscopic
potential systems, much like the Caughey–O’Kelly uncoupl-
ing of multi-degree-of-freedom viscously damped vibrating
systems does.

(3) The results obtained have considerable computational value
since one only needs to compute the responses of uncoupled
two-degree-of-freedom gyroscopic potential subsystems and
single-degree-of-freedom pure potential subsystems, both of
which can be obtained in closed form. This makes the

determination of the response of large-scale multi-degree-
of-freedom gyroscopic systems to impressed external
forces computationally more efficient, while providing
greater insights into the computed results.

(4) A commutation condition for a gyroscopic potential system
(which is analogous to the Caughey–O’Kelly commutation
condition for a damped potential system) provides a neces-
sary and sufficient condition for the gyroscopic system to
be uncoupled in the manner described in (1) with the
further restriction that each of the m two-degree-of-freedom
gyroscopic subsystems has potential matrices with double
eigenvalues (double frequencies of vibration). Such a decom-
position is also, as we have shown, a real analogue of the
complete decoupling (diagonalization) of gyroscopic
systems by complex coordinate changes.

From a practical viewpoint, this restriction that is imposed
by the commutation condition on the nature of the stiffness
(potential) matrix is quite severe, since the requirement that
the stiffness matrix must have several eigenvalues each
with multiplicity greater than 1 is not commonly observed
in both naturally occurring as well as engineered structures.
Therefore, the practical usefulness of this commutation con-
dition appears limited.

(5) Because this commutation condition for multi-degree-of-
freedom gyroscopic potential systems is restrictive, given a
mass matrix, the number of (potential matrix, skew-
symmetric matrix) pairs that satisfy the twin necessary and
sufficient (n&s) conditions provided here—which guarantee
decomposition to uncoupled subsystems (as described in (1)
above)—, far exceed, roughly speaking, the number of such
pairs that satisfy the commutation condition described in
item (4) above.

Being less restrictive, the twin necessary and sufficient
conditions obtained here are therefore more valuable in
determining whether a multi-degree-of-freedom gyroscopic
system can be decomposed into uncoupled subsystems,
each with at most two-degrees-of-freedom.

(6) If the gyroscopic matrix that describes the gyroscopic poten-
tial system has distinct nonzero eigenvalues, then the two
independent necessary and sufficient conditions obtained
for decoupling the multi-degree-of-freedom gyroscopic
system (in the manner described in (1)) reduce to just a
single necessary and sufficient condition. However, this con-
dition is not the gyroscopic analog of the Caughey–O’Kelly
commutation condition.

In Sec. 4, all the results obtained in Sec. 3 are extended to linear
multi-degree-of-freedom gyroscopic potential systems whose stiff-
ness matrices are assumed to be positive definite. All the analytical
results corresponding to those obtained in Sec. 3 are shown to be
obtained for such systems by a simple interchange of symbols
used in Sec. 3.
Several examples are considered throughout the paper illustrating

various facets of the analytical results, thereby demonstrating the
improvement in our fundamental understanding of the dynamics
of multi-degree-of-freedom gyroscopic potential systems when
the necessary and sufficient conditions described in the paper are
satisfied.

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
No data, models, or code were generated or used for this paper.

Journal of Applied Mechanics MARCH 2024, Vol. 91 / 031003-9



Appendix
Proof of Lemma 2. (a) Necessity. The necessity of the conditions

of Lemma 2 is almost obvious. Indeed, if an orthogonal reduction to
forms (Eqs. (5) and (6)) is possible, then the matrices KG2=G2K
and (KG)2= (GK)2, because they are orthogonally similar to the
diagonal matrices ΛΓ2 and (ΛΓ)2. For example, assuming Eqs.
(5) and (6) are true, we have K=QΛQT and G=QΓQT, so that
KG2=QΛΓ2QT=QΓ2ΛQT=G2K with the second equality in the
chain following from Remark 1.
(b) Sufficiency. Since the matrix G≠ 0, let spec(G)= (± iβ1,…,

± iβm, 0,…, 0), βj≠ 0 ( j= 1, …, m) be the spectrum of G.
From Eq. (19), spec(G2) = (− β21, −β

2
1, . . . , −β

2
m, −β

2
m, 0, . . . , 0).

Suppose that conditions (Eqs. (7) and (8)) are satisfied. These two
conditions ensure that the matrices K and G2 commute and that
the matrices K and GKG commute. Furthermore, using Eq. (7),
we find that (G2)(GKG)=GG2KG=GKG2G= (GKG)(G2), which
shows that G2 and GKG also commute. Hence, the symmetric
matrices, G2, K, and GKG commute pairwise. This is the necessary
and sufficient condition for a (real) orthogonal matrix to exist such
that the three matrices can be simultaneously diagonalized; thus, the
three matrices have a complete set of common eigenvectors. The
columns of this orthogonal matrix can be reordered so that the
eigenvalues of the diagonal matrix resulting from the diagonaliza-
tion of G2 (in the simultaneous diagonalization of the three matri-
ces) can be placed in any desired order. Therefore, with no loss
of generality, the first common unit eigenvector, q1, of the orthog-
onal matrix, can be taken to be such that

G2q1 = −β21q1, β1 ≠ 0

Kq1 = λ1q1

GKGq1 = μ1q1

where λ1 and μ1 are real numbers, which could also be zero.
Premultiplying the last equation by G gives G2KGq1= μ1Gq1,

and taking into account that KG2=G2K, we get KGG2q1=
μ1Gq1. Noting that G2q1 = −β21q1, we then obtain

K(Gq1) = −μ1β
−2
1 (Gq1)

It therefore follows that −Gq1 is also an eigenvector of K. Since

‖Gq1‖ =
�����������
qT1G

TGq1
√

=
����������
−qT1G2q1

√
=

��������
β21q

T
1 q1

√
= β1 ≠ 0, we see

that the vector −β−11 Gq1 is a unit eigenvector of K corresponding
to the eigenvalue λ2 = −μ1β−21 . We shall denote it by q2: =
−β−11 Gq1 in what follows. Furthermore, G is skew-symmetric,
and therefore, qT2q1 = β−11 qT1Gq1 = 0; i.e., the unit vectors q1 and
q2 are orthogonal. We therefore find that q1 and q2 are two different
orthogonormal eigenvectors of K.
We now use these two orthonormal unit vectors, q1 and q2, as the

first and second columns of the orthogonal matrix Q1 =
q1 q2 q3 . . . qn

[ ]
in which the remaining columns are

chosen arbitrarily, providedQT
1Q1 = In. Our purpose is to determine

the structure of the symmetric matrix QT
1KQ1: = [qTi Kqj] and the

skew-symmetric matrix QT
1GQ1: = [qTi Gqj] by determining the

first two rows (columns) of each of them.
We see that for j= 1, 2, …, n, noting the orthogonality of the

columns of Q1, the elements of the first and second rows
(columns) of QT

1KQ1 are given, respectively, by

qT1Kqj = qTj Kq1 = λ1q
T
j q1 = λ1δ1j

and

qT2Kqj = qTj Kq2 = λ2q
T
j q2 = λ2δ2j

where δij denotes the Kronecker delta. Likewise, for j= 1, 2, …, n,
noting that Gq1=−β1q2 and Gq2 = −β−11 G2q1 = β1q1, the elements
of the first and second rows (columns) of QT

1GQ1 are given,

respectively, by the relations

qT1Gqj = −qTj Gq1 = β1q
T
j q2 = β1δ2j

and

qT2Gqj = −qTj Gq2 = −β1qTj q1 = −β1δ1j

We therefore observe that the matrices QT
1KQ1 and QT

1GQ1 have
the following structure:

and

Since the (n− 2)-dimensional matrices Kn−2 and Gn−2 satisfy the
same conditions as K and G, this procedure continues in the same
manner, and after m steps, we conclude that there exists an orthog-
onal matrix Q̃ such that

Q̃
T
GQ̃ = diag β1

0 1
−1 0

[ ]
, . . . , βm

0 1
−1 0

[ ]
, 0, . . . , 0

( )

and

Q̃
T
KQ̃ = diag(λ1, . . . , λ2m, Kn−2m)

where Kn−2m is an (n−2m)-dimensional symmetric matrix.
It remains to observe that there always exists an orthogonal

matrix Qn−2m of order (n−2m) that reduces the matrix Kn−2m to
diagonal form and, consequently, the orthogonal matrix

Q = Q̃
I2m 0
0 Qn−2m

[ ]

reduces K and G to the forms given in Eqs. (5) and (6).
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